References for the next pages

Machine Learning with PyTorch and Scikit-Learn, tjhon™

Machine

S.Raschka, Y.Liu & V.Mirjalili Learning
o with PyTorch
Packt Publishing (2022) and Scikit-Learn

Develop machine learning and deep learning

ISBN 978-1-80181-931-2

Highly recommended, but uses Python / Pytorch

Packt>

i
DEEP

Deep Learning: A Visual Approach
Andrew Glassner

No Starch Press (2021)

ISBN 978-1-71850-072-3

Extremely recommended, conceptual (no code)

Fernando San Segundo
Machine Learning with PyTorch and Scikit-Learn,

S.Raschka, Y.Liu & V.Mirjalili

Packt Publishing (2022)

ISBN 978-1-80181-931-2

Highly recommended, but uses Python / Pytorch

Fernando San Segundo
References for the next pages

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo
Deep Learning: A Visual Approach

Andrew Glassner

No Starch Press (2021)

ISBN 978-1-71850-072-3

Extremely recommended, conceptual (no code)

Fig. 13-5 in Glassner, an artificial neuron

Input 1

Input 2 Weight 1

Weight 2

Input 3 — Weight I

Weight 4 Usually non-linear

/ Activation function
Input 4

Weight 5

Bias =1.0

Fernando San Segundo

Fernando San Segundo
Fig. 13-5 in Glassner, an artificial neuron

Fernando San Segundo
Usually non-linear
Activation function

Fig. 13-11 in Glassner, a deep learning neural network (with 3 layers).
This is an example of a dense feedforward neural network, also called a
multilayer perceptron (MLP)

Inputs

Input Layer

Layer 1

\ XA/

Hidden Layer

Layer 2

[XX

a:

Layer 3

—p Outputs

Hidden Layer

Output Layer

Fernando San Segundo

Fernando San Segundo
Fig. 13-11 in Glassner, a deep learning neural network (with 3 layers).
This is an example of a dense feedforward neural network, also called a
multilayer perceptron (MLP)

] Example:
Image Labeling

Example:
Sentiment analysis

Many-to-one One-to-many
SYNC ASYNC
] Example: translation, generative text
Many-to-many Many-tn-many

Example:
video frame labeling,

DNA Figure 15.2: The most common sequencing tasks

Fernando San Segundo

Fernando San Segundo
Example:
Sentiment analysis

Fernando San Segundo
Example:
Image Labeling

Fernando San Segundo
Example:
video frame labeling, DNA

Fernando San Segundo
SYNC

Fernando San Segundo
ASYNC

Fernando San Segundo
Example: translation, generative text

Hidden layers
units (neurons) not shown

A standard / %

feedforward neural
network network

(x] m

Figure 15.3: The dataflow of a standard feedforward NN and an RNN

Fernando San Segundo

Fernando San Segundo
Hidden layers
units (neurons) not shown

Fernando San Segundo

Fernando San Segundo

Fig. 19-11 in Glassner, a recurrent neural cell

Output
A

<-----» State
Neural _}
networks [« State

$

I
Input

Fig. 19-13 in Glassner, an unrolled recurrent neural network, used for NLP tasks (next word prediction)

swam night best party times

ot
o> DB DB)R)R)
T 1T 1

it was the best of

Fernando San Segundo

Fernando San Segundo
Fig. 19-11 in Glassner, a recurrent neural cell

Fernando San Segundo

Fernando San Segundo
Fig. 19-13 in Glassner, an unrolled recurrent neural network, used for NLP tasks (next word prediction)

in an RNN, the hidden layer receives its input from both the input layer of the current time step and the
hidden layer from the previous time step.

A new kind of input:

Allows the RNN
to have a memory!

Multilayer network:

Unfold
return sequences
is True for "deep"
layers

Figure 15.4: Examples of an RNN with one and two hidden layers

Fernando San Segundo
in an RNN, the hidden layer receives its input from both the input layer of the current time step and the hidden layer from the previous time step.

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo
A new kind of input:

Allows the RNN
to have a memory!

Fernando San Segundo
Multilayer network:

return sequences
is True for "deep"
layers

Fig. 19-19 in Glassner, a deep RNN (3 layers) in rolled(left) and unrolled form.

Oufut OutEutO OutEuﬂ OutEutZ OutEutS OutEut4
a4

S m»pwz»z»z»é}
I \ A A A A
| a

S mwzwzwzwzwé%
I \ A A A A
| 4

S mw>©>$>©>@;%
T __1 1 1 1 T

Input InputO Inputi Input2 Input3 Input4
. _

Fernando San Segundo

Fernando San Segundo
Fig. 19-19 in Glassner, a deep RNN (3 layers) in rolled(left) and unrolled form.

Fernando San Segundo
Time axis (in forecasting)

Fernando San Segundo

Fernando San Segundo

Different types of weight matrices in RNNs

Hidden to output (or to next layer)

) s
w w,,
(ht) Unfnfﬂ>

Recurrent

Figure 15.5: Applying weights to a single-layer RNN

Inout to hidden

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo
Different types of weight matrices in RNNs

Fernando San Segundo
Inout to hidden

Fernando San Segundo
Recurrent

Fernando San Segundo
Hidden to output (or to next layer)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=58337

Backpropagation Through Time: What It

Does and How to Do It

PAUL). WERBOS

1990 PROCEEDINGS OF THE IEEE

Backpropagation is now the most widely used tool in the field
of artificial neural networks. At the core of backpropagation is a
method for calculating derivatives exactly and efficiently in any
large systern made up of elementary subsystems or calculations
which are represented by known, differentiable functions; thus,
backpropagation has many applications which do not involve
neural networks as such,

This paper first reviews basic backpropagation, a simple method
which is now being widely used in areas like pattern recognition
and fault diagnosis. Next, it presents the basic equations for back-
propagation through time, and discusses applications to areas like
pattern recognition involving dynamic systems, systems identifi-
cation, and control. Finally, it describes further extensions of this
method, to deal with systems other than neural networks, systems
involving simultaneous equations or frue recurrent networks, and
other practical issues which arise with this method. Pseudocade is
provided to clanfy the algorithms. The chain rule for ordered deriv-
atives—the theorem which underlies backpropagation—is briefly
discussed.

I, INTRODUCTION

Backpropagation through time is a very powerful tool,
with applications to pattern recognition, dynamic model-
ing, sensitivity analysis, and the control of systems over
time, among others. It can be applied to neural networks,
to econometric models, to fuzzy logic structures, to fluid
dynamics models, and to almost any system built up from
elementary subsystems or calculations, The one serious
constraint is that the elementary subsystems must be rep-
resented by functions known to the user, functions which
are both continuous and differentiable (i.e., possess deriv-
atives). For example, the first practical application of back-
propagation was for estimating a dynamic model to predict
nationalism and social communications in 1974 [1].

Unfortunately, the most general formulation of back-
propagation can only be used by those who are willing to
work out the mathematics of their particular application.
This paper will mainly describe a simpler version of back-
propagation, which can be translated into computer code
and applied directly by neural network users.

Section [l will review the simplest and most widely used
form of backpropagation, which may be called “basic back-

Manuscript received September 12, 1989; revised March 15, 1990,

The author is with the Mational Science Foundation, 1800 G St.
NW, Washington, DC 20550,

IEEE Log Number 9039172,

propagation.” The concepts here will already be familiar to
those who have read the paper by Rumelhart, Hinton, and
Williams (2] in the seminal book Paralle! Distributed Pro-
cessing, which played a pivotal role in the development of
the field. {That book also acknowledged the prior work of
Parker [3] and Le Cun [4], and the pivotal role of Charles
Smith of the Systems Development Foundation.) This sec-
tion will use new notation which adds a bit of generality and
makes it easier to go on to complex applications in a rig-
orous manner. (The need for new notation may seem
unnecessary ta some, but for those who have to apply back-
propagation to complex systems, it is essential.)

Section |1l will use the same notation to describe back-
propagation through time. Backpropagation through time
has been applied to concrete problems by a number of
authors, including, at least, Watrous and Shastri [5], Sawai
and Waibel et al. [6), Nguyen and Widrow [7], Jordan [8],
Kawato [9], Elman and Zipser, Narendra [10], and myself [1],
[11], [12], [15]. Section IV will discuss what is missing in this
simplified discussion, and how to do better.

At its core, backpropagation is simply an efficient and
exact method for calculating all the derivatives of a single
target quantity (such as pattern classification error) with
respect to a large set of input quantities (such as the param-
eters or weights in a classification rule). Backpropagation
through time extends this method so that it applies to
dynamic systems. This allows one to calculate the deriva-
tives needed when optimizing an iterative analysis pro-
cedure, a neural network with memaory, or a control system
which maximizes performance over time.

1, Basic BACKPROPAGATION
A. The Supervised Learning Problem

Basic backpropagation is current the most popular
method for performing the supervised learning task, which
is symbaolized in Fig. 1.

In supervised learning, we try to adapt an artificial neural
network so that its actual outputs (¥} come close to some
target outputs (¥) for a training set which contains T pat-
terns. The goal is to adapt the parameters of the network
so that it performs well for patterns from outside the train-
ing set.

The main use of supervised learning today lies in pattern

U.5. Government work not protected by U.S. copyright

1550

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 10, OCTOBER 1990

Fernando San Segundo

Fernando San Segundo
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=58337

Fernando San Segundo

Fernando San Segundo
1990 PROCEEDINGS OF THE IEEE

The problem of gradient size in RNNs

On the difficulty of training recurrent neural networks by R. Pascanu, T. Mikolov, and Y. Bengio, 2012 (https://arxiv.org/pdf/1211.5063.pdf).

Vanishing Exploding
gradient: gradient:

W={J.99‘ ’ =1.01 w=I

Figure 15.8: Problems in computing the gradients of the loss function

|| <1 lw,,|>1 Desirable: |w, |=1

hhl

Alternatives:

- Gradient clipping
- Truncated backpropagation

t [STM | (Long Short-Term Memory by S. Hochreiter and J. Schmidhuber, Neural Computation, 9(8): 1735-1780, 1997

Fernando San Segundo

Fernando San Segundo
The problem of gradient size in RNNs

Fernando San Segundo
Alternatives:

· Gradient clipping
· Truncated backpropagation

· LSTM

Fernando San Segundo

Fernando San Segundo

Fernando San Segundo
On the difficulty of training recurrent neural networks by R. Pascanu, T. Mikolov, and Y. Bengio, 2012 (https://arxiv.org/pdf/1211.5063.pdf).

Fernando San Segundo
(Long Short-Term Memory by S. Hochreiter and J. Schmidhuber, Neural Computation, 9(8): 1735-1780, 1997

LSTM Cell (modern version)

Adds: gates + state

c(t-1)

C(t)
— o To next
2 g Tanh layer
orget gate Input| Gate
Wiy Wiy by) (Wni Wi by | (W W b,
To next
h(t-1) o 0 time step
L
el | Output Gat h®)
wﬂa wxu bq
x(tj Each of these gates is a Neural network with its own set of

weights and biases
Figure 15.9: The structure of an LSTM cell
Note:

- The LSTM cell essentially replaces the hidden cell of the RNN, but it adds a new recurrent
edge, called the state C_t.

- Cell state from previous time step, C_(t—1), is used to get the current state C_t, without being
multiplied directly by any weight factor (avoids vanishing or exploding gradient).

Fernando San Segundo

Fernando San Segundo
Note:

· The LSTM cell essentially replaces the hidden cell of the RNN, but it adds a new recurrent edge, called the state C_t.

· Cell state from previous time step, C_(t–1), is used to get the current state C_t, without being multiplied directly by any weight factor (avoids vanishing or exploding gradient).

Fernando San Segundo
Forget gate

Fernando San Segundo
Input Gate

Fernando San Segundo
Output Gate

Fernando San Segundo
LSTM Cell (modern version)

Adds: gates + state

Fernando San Segundo

Fernando San Segundo
Each of these gates is a Neural network with its own set of weights and biases

References for the next pages

Medium post: Animated RNN, LSTM and GRU by Raimi Karim
https://towardsdatascience.com/animated-rnn-Istm-and-gru-ef124d06¢cf45

Medium post: lllustrated Guide to LSTM’s and GRU'’s: A step by step explanation
by Michael Phi

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-
explanation-44e9eb85bf21

Youtube video: Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) by
Brandon Rohrer

https://www.youtube.com/watch?v=WCUNPDb-5EY]

Christopher Olah's tutorial: Understanding LSTM Networks

https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs

Fernando San Segundo
References for the next pages

Fernando San Segundo
Medium post: Animated RNN, LSTM and GRU by Raimi Karim

Fernando San Segundo
https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45

Fernando San Segundo
Medium post: Illustrated Guide to LSTM’s and GRU’s: A step by step explanation by Michael Phi

Fernando San Segundo
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Fernando San Segundo

Fernando San Segundo
Youtube video: Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) by Brandon Rohrer

Fernando San Segundo
https://www.youtube.com/watch?v=WCUNPb-5EYI

Fernando San Segundo
Christopher Olah's tutorial: Understanding LSTM Networks

Fernando San Segundo
https://colah.github.io/posts/2015-08-Understanding-LSTMs

|0ng prediction
short-term "

memory

selection

@,

.- «——1] collected

forgetting
@ L® memory

possibilities

filtered
possibilities

ignoring

()

new possibilities
information

Fernando San Segundo

Fernando San Segundo
Output gate

Fernando San Segundo
Input gate

C

t-1

cell state

h

t1

hidden state /
units

OO0

input

C

t-1

cell state

OO - 00000

h concatenate

t

hidden state / I

units O O O

X

t

input

C

t-1

cell state

forget gate
L

l
> 00000

h

t-1

hidden state /
units

concatenate

?

|
OO0

X

t

input

multiplication
@) - 00O
A
(%4
cell state
A
forget;gate
l
OO > O0000
ht-1 concatenate
hidden state / T
units

OO0

X

t

input

multiplication

C

t-1

cell state

- Q0O

! T
forgetigate

l

OO > 00000
ht-1 concatenate
. I
hidden state / I
units

00O

X

t

input

multiplication

C

t-1

cell state

- Q0O

A L '
forgetigate . lnputrgates |
l
OO > Q0000
ht-1 concatenate
hidden state / T
units

OO0

X

t

input

multiplication
OO - Q0O
A
(%4
cell state
multiplication
- OTO
‘ ‘o +
forgetglgate l input gates |
l
OO > OO0000
ht—1 concatenate
hidden state / T
units
OO0
X

t

input

multiplication addition
OO - 00O - 00
C A
t-1
cell state
multiplication
- OTO
. : :
forget;gate ‘l input gates 1
l
OO > Q0000
ht-1 concatenate
hidden state / T
units
OO0
X

t

input

multiplication addition

C

t-1

cell state

’QP - 00

|

multiplication

>OO

%/ﬁ%

A
forgetilgate ! input gates
l
OO - 00000
ht-1 concatenate
hidden state / T
units

OO0

X

t

input

- 00

C

t

cell state

multiplication addition

C

t-1

cell state

- QO - 00

|

multiplication

>OO

%%%

A

forget gate | input gates | output gate
L L - |

0 >OQOOO
ht-1 concatenate
hidden state / T
units

OO0

X

t

input

- 00

C

t

cell state

multiplication addition

C

t-1

cell state

- QO - 00 ¢
A

multiplication

i 4 4 4
forget‘gate l input gates J outputlgate
l
OO > Q0000
ht-1 concatenate
hidden state / T
units

OO0

X

t

input

- 00

C

t

cell state

multiplication addition

C

t-1

cell state

- Q0O - 00 T
A

| o0

multiplication multiplication

= OO QO

Ak

A 4
forget gate input gates output gate
L L l - | J
OO > Q0000
ht-1 concatenate
hidden state / T
units

OO0

X

t

input

- 00

C

t

cell state

multiplication

C

t-1

cell state

- Q0O

forget gate
L

A

input gates

- 00

|

multiplication

addition

;

GP

multiplication

output gate
J

h

t-1

hidden state /
units

l
00000

concatenate

1

- 00

C

t

cell state

OO0

X

t

input

hidden state /
units

GRU (Gated Recurrent Unit)

Introduced in 2014 by Cho et al.
Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078v3

reset gate

‘GRU combine the forget and input
gates into a single “update gate.”

- It also merges the cell state and
hidden state

- By simplifying the network structure
they can become faster to train

update gate

Fernando San Segundo

Fernando San Segundo
GRU (Gated Recurrent Unit)

Fernando San Segundo

Fernando San Segundo
Introduced in 2014 by Cho et al.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078v3

Fernando San Segundo
·GRU combine the forget and input gates into a single “update gate.”

· It also merges the cell state and hidden state

· By simplifying the network structure they can become faster to train

	RNN_extra_slides
	LSTM.gif

