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Fig. 13-5 in Glassner, an artificial neuron
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Fig. 13-11 in Glassner, a deep learning neural network (with 3 layers).
This is an example of a dense feedforward neural network, also called a
multilayer perceptron (MLP)
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Fig. 13-11 in Glassner, a deep learning neural network (with 3 layers).
This is an example of a dense feedforward neural network, also called a  
multilayer perceptron (MLP)
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Fig. 19-11 in Glassner, a recurrent neural cell
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Fig. 19-13 in Glassner, an unrolled recurrent neural network, used for NLP tasks (next word prediction)
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Fig. 19-11 in Glassner, a recurrent neural cell
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Fig. 19-13 in Glassner, an unrolled recurrent neural network, used for NLP tasks (next word prediction)


in an RNN, the hidden layer receives its input from both the input layer of the current time step and the
hidden layer from the previous time step.

A new kind of input:

Allows the RNN
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Figure 15.4: Examples of an RNN with one and two hidden layers
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Fig. 19-19 in Glassner, a deep RNN (3 layers) in rolled(left) and unrolled form.
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Fig. 19-19 in Glassner, a deep RNN (3 layers) in rolled(left) and unrolled form.
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Different types of weight matrices in RNNs
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Figure 15.5: Applying weights to a single-layer RNN
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Backpropagation Through Time: What It

Does and How to Do It

PAUL ). WERBOS

1990 PROCEEDINGS OF THE IEEE

Backpropagation is now the most widely used tool in the field
of artificial neural networks. At the core of backpropagation is a
method for calculating derivatives exactly and efficiently in any
large systern made up of elementary subsystems or calculations
which are represented by known, differentiable functions; thus,
backpropagation has many applications which do not involve
neural networks as such,

This paper first reviews basic backpropagation, a simple method
which is now being widely used in areas like pattern recognition
and fault diagnosis. Next, it presents the basic equations for back-
propagation through time, and discusses applications to areas like
pattern recognition involving dynamic systems, systems identifi-
cation, and control. Finally, it describes further extensions of this
method, to deal with systems other than neural networks, systems
involving simultaneous equations or frue recurrent networks, and
other practical issues which arise with this method. Pseudocade is
provided to clanfy the algorithms. The chain rule for ordered deriv-
atives—the theorem which underlies backpropagation—is briefly
discussed.

I, INTRODUCTION

Backpropagation through time is a very powerful tool,
with applications to pattern recognition, dynamic model-
ing, sensitivity analysis, and the control of systems over
time, among others. It can be applied to neural networks,
to econometric models, to fuzzy logic structures, to fluid
dynamics models, and to almost any system built up from
elementary subsystems or calculations, The one serious
constraint is that the elementary subsystems must be rep-
resented by functions known to the user, functions which
are both continuous and differentiable (i.e., possess deriv-
atives). For example, the first practical application of back-
propagation was for estimating a dynamic model to predict
nationalism and social communications in 1974 [1].

Unfortunately, the most general formulation of back-
propagation can only be used by those who are willing to
work out the mathematics of their particular application.
This paper will mainly describe a simpler version of back-
propagation, which can be translated into computer code
and applied directly by neural network users.

Section [l will review the simplest and most widely used
form of backpropagation, which may be called “basic back-
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propagation.” The concepts here will already be familiar to
those who have read the paper by Rumelhart, Hinton, and
Williams (2] in the seminal book Paralle! Distributed Pro-
cessing, which played a pivotal role in the development of
the field. {That book also acknowledged the prior work of
Parker [3] and Le Cun [4], and the pivotal role of Charles
Smith of the Systems Development Foundation.) This sec-
tion will use new notation which adds a bit of generality and
makes it easier to go on to complex applications in a rig-
orous manner. (The need for new notation may seem
unnecessary ta some, but for those who have to apply back-
propagation to complex systems, it is essential.)

Section |1l will use the same notation to describe back-
propagation through time. Backpropagation through time
has been applied to concrete problems by a number of
authors, including, at least, Watrous and Shastri [5], Sawai
and Waibel et al. [6), Nguyen and Widrow [7], Jordan [8],
Kawato [9], Elman and Zipser, Narendra [10], and myself [1],
[11], [12], [15]. Section IV will discuss what is missing in this
simplified discussion, and how to do better.

At its core, backpropagation is simply an efficient and
exact method for calculating all the derivatives of a single
target quantity (such as pattern classification error) with
respect to a large set of input quantities (such as the param-
eters or weights in a classification rule). Backpropagation
through time extends this method so that it applies to
dynamic systems. This allows one to calculate the deriva-
tives needed when optimizing an iterative analysis pro-
cedure, a neural network with memaory, or a control system
which maximizes performance over time.

1, Basic BACKPROPAGATION
A. The Supervised Learning Problem

Basic backpropagation is current the most popular
method for performing the supervised learning task, which
is symbaolized in Fig. 1.

In supervised learning, we try to adapt an artificial neural
network so that its actual outputs (¥} come close to some
target outputs (¥) for a training set which contains T pat-
terns. The goal is to adapt the parameters of the network
so that it performs well for patterns from outside the train-
ing set.

The main use of supervised learning today lies in pattern
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The problem of gradient size in RNNs

On the difficulty of training recurrent neural networks by R. Pascanu, T. Mikolov, and Y. Bengio, 2012 (https://arxiv.org/pdf/1211.5063.pdf).
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Figure 15.8: Problems in computing the gradients of the loss function
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Alternatives:

- Gradient clipping
- Truncated backpropagation

t [ STM | (Long Short-Term Memory by S. Hochreiter and J. Schmidhuber, Neural Computation, 9(8): 1735-1780, 1997
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On the difficulty of training recurrent neural networks by R. Pascanu, T. Mikolov, and Y. Bengio, 2012 (https://arxiv.org/pdf/1211.5063.pdf).
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LSTM Cell (modern version)

Adds: gates + state
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Figure 15.9: The structure of an LSTM cell
Note:

- The LSTM cell essentially replaces the hidden cell of the RNN, but it adds a new recurrent
edge, called the state C_t.

- Cell state from previous time step, C_(t—1), is used to get the current state C_t, without being
multiplied directly by any weight factor (avoids vanishing or exploding gradient).


Fernando San Segundo

Fernando San Segundo
Note:

· The LSTM cell essentially replaces the hidden cell of the RNN, but it adds a new recurrent edge, called the state C_t.

· Cell state from previous time step, C_(t–1), is used to get the current state C_t, without being multiplied directly by any weight factor (avoids vanishing or exploding gradient).
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GRU (Gated Recurrent Unit)

Introduced in 2014 by Cho et al.
Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078v3

reset gate

‘GRU combine the forget and input
gates into a single “update gate.”

- It also merges the cell state and
hidden state

- By simplifying the network structure
they can become faster to train

update gate
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·GRU combine the forget and input gates into a single “update gate.” 

· It also merges the cell state and hidden state

· By simplifying the network structure they can become faster to train
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