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Basic Linear Processes
Definition

* Alinear process can be represented as a linear combination of
random variables (Box-Jenkins):

ylel =+ ) yelt— 1
i=0

where p is the mean of y[t], ¥, = 1 and {[t]} is a sequence
of iid random variables with zero mean and well defined
distribution.

* We will focus on 3 types of linear processes:
- White noise processes
- Autoregressive processes
- Moving average processes
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Fundamental concepts
White noise process

* Definition: sequence of uncorrelated random variables,
identically distributed with zero mean and constant variance.

* General expression:  y[t] = ¢[t]

* Properties: E(e[tD) =0 vt
E(e[t]?)=0" vt
E(e[t]e[t] =0 vt =t

* Others:
* Independent or strict white noise
* Gaussian white noise
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Basic Linear Processes
Autoregressive processes

* Process AR(p) (Yule, 1927):

VIt1= 3+ oyt —1+ @, Y[t — 2] +...+ @, Y[t — p] + &[t]

* Using the backshift operator B: By[t] = y[t-1]

@(B)y[t] = &[t]
where:

¢(B)=1-9B-¢,B* —..—¢,B"

wn
©
=
O
|

Time Series Forecasting 7
Antonio Mufioz, fernando San Segundo, Jaime Pizarroso



Basic Linear Processes
Autoregressive processes

* Foran AR(p) to be stationary, the roots of its characteristic
polynomial:

1— @B —@,B*—...—p,BP =0

have to lie outside the unit circle.
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Basic Linear Processes
Autoregressive processes

ARL with phi=0.8
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Basic Linear Processes

ARL with phi=0.4
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AR1 with phi=-0.8
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Basic Linear Processes
Autoregressive processes

AR2 with phil=1.1 and phi2=-0.5
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Basic Linear Processes
Autoregressive processes

AR2 with phi1=0.3 and phi2=0.5
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Basic Linear Processes
Moving Average processes

* MA(q) process (Yule, 1921):

y[t] =8+ elt] - Gelt —1] - G,e[t — 2] ... — 6, ¢[t —q]

or: y[t] = 8(B)e[t]

where:

6(B)=1-6,B—6,B% —...—0,B°

q
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Basic Linear Processes
Moving Average processes

* |t is possible to write any stationary AR(p) model as an MA(o):
y[t] = ylt — 1] + €[t]
= @(pylt — 2] + €[t = 1]) + &[]
= @?y[t — 2] + pelt — 1] + £[t]
= @3y[t — 3] + %[t — 2] + e[t — 1] + €[¢]

* For a MA(qg) process to be invertible, the roots of the
polynomial:

1 i 91B ey 92B2__9qu = O

have to lie outside the unit circle.

If the MA(q) process is invertible, then it can be written as an
AR(0).

w
-
=
O
)

Time Series Forecasting 15
Antonio Mufioz, fernando San Segundo, Jaime Pizarroso



Basic Linear Processes
Moving Average processes

MA1 with theta=0.6
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Basic Linear Processes
Moving Average processes

MAL with theta=-0.6
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Basic Linear Processes
Moving Average processes

MA2 with thetal=-0.6, theta2=0.4
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Basic Linear Processes

ARMA processes

* ARMA(p,q) process (Wold, 1938):

YIt1- @yt 1.~ VIt - pl =6+ &lt] - Oielt — 1 ...~ G, e[t — ]

or:| ¢(B)y[t] =0(B)elt]

where:
@(B)=1-pB-¢,B°~..— ¢ B"
0(B)=1-6B —6?282 —...—Hqu

wn
©
=
O
|

Time Series Forecasting 19
Antonio Mufioz, fernando San Segundo, Jaime Pizarroso



Basic Linear Processes

ARMA processes

* For an ARMA(p,q) process to be stationary, the roots of the
polynomial:

1— @B —@;B*~...—p,B? =0

have to lie outside the unit circle.

e Foran ARMA(p,q) process to be invertible, the roots of the
polynomial:

1—6,B —6,B>—...—0,B9 = 0

have to lie outside the unit circle.
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Basic Linear Processes

ARMA processes

ARMA(1,1) with phi=0.8, theta=-0.7
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Basic Linear Processes

ARMA processes

ARMA(1,2) with phi=0.8, thetal=-0.7, theta2=0.4
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ARMA Model Identification
Sample Autocorrelation Function (ACF)

* Autocorrelation: Nk _ _
. D (y[t+k]=Y)(YIt]-Y)
Px =l pe=5r=1

& & 2 (yIt1-y

* Under the assumption p,=0,

p, [IN(0,0% )
1 k-1
if, in addition, {y[t]} is a MA(q) process, then: O'Ek ~ N” + 22,5,.2)
i=1

and we can stablish the 95% confidence interval:

b €| ~1.96\[0% ;+1.96,[0% |
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Fundamental concepts
Stationary Processes

« Correlogram ={,[)k}for k=1,... (notrecommended for k>N/4)
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ARMA Model Identification
Partial Autocorrelation Function (PACF)

* For an AR(p) process, the ACF decays after k=p, but it never
reachs 0 = it is not easy to identify an AR process from its ACF

AR2 with phi1=0.3 and phi2=0.5
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ARMA Model Identification
Partial Autocorrelation Function (PACF)

e The PACF can be obtained by linear regression, interpreting each
coefficient ¢, as the partial correlation between y[t] and y[t-k] after
having eliminated in both variables the effects of y[t-1],..,y[t-k+1]:

Y[t] :¢31,1y[t_1]
Y[t] zéz,ly[t _1] "‘éz,zy[t _2]

* For an AR(p) process and k>p:

1 - 1.96 1.96

h-No. G) = @ke[‘m’m}
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ARMA Model Identification
ACF/PACF Examples

ARL with phi=0.8

25-
W ! 1 A ) ’ I A b l
0.0- | | Al ) | Al I
-25-
5.0° 1 1 1 1 1 1
0 100 200 300 400 500
0.8~ 0.8-
0.6~ 0.6~
0.4~ 60.4-
< <
< Q
O.ZJ\ A‘ H 0.2-
J-bL R | ______________ S {1 S S S
0.0\ I—||II|.|I-I|H|—|| 0.0 IIIII|||IIIII'|IT| |II
R I IR R I { I N I
1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Lag Lag

w
-
=
O
)

Time Series Forecasting 28
Antonio Mufioz, fernando San Segundo, Jaime Pizarroso



ARMA Model Identification
ACF/PACF Examples

AR2 with phil=1.1 and phi2=-0.5
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Random noise
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Random noise

ACF
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MA1 with theta=0.6
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MA2 with thetal=-0.6, theta2=0.4
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Basic Linear Processes
ARMA processes

ARMA(1,1) with phi=0.8, theta=-0.7
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Basic Linear Processes

ARMA processes

ARMA(1,2) with phi=0.8, thetal=-0.7, theta2=0.4
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ARMA Model Identification

|dentification of AR and MA processes
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ARMA Model Identification
|dentification of ARMA(1,1) processes
]

10

1 FAC 1 FACP
-0.8,0.8
oy o OMIET8 8
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ARMA Model Diagnosis
The ideal model

* Residuals = White Noise (Gausian)
e Stationary and invertible

» Coefficients are statistically significant and
uncorrelated

* Model coefficients are sufficient to represent the
series

* High degree of fit compared with other models
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ARMA Model Diagnosis
Residual analysis

* Plot of the standarized residuals with different confidence limits
(t20, £30,, t40,)

Residuals

outlier

O\A/\A ﬂ/\[\l\r\/\/\l\l\ j\J/\ AAAAAA
VUMI\/ Y \/\/V MVVV \/VVVV

2 ¥

-4

outlier

0 lb 26 36 4’0 5;0 éO 7‘0 86 96 100
& Check for heteroskedasticity (constant variance)
£ Detection of outliers
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ARMA Model Diagnosis
Residual analysis: effect of an outlier
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ARMA Model Diagnosis
Residual analysis: effect of an outlier

AR1 + outlier at t=100
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residuals

AR1 with phi=0.8
Residuals from ARIMA(1,0,0) with zero mean
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Series: residuals
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Estimate Std.Error z-value Pr(>|z])
arl 0.799547 0.026679 29.969 < 2.2e-16 ***

Residuals from ARIMA(1,0,0) with zero mean

I Ilp llllll--—-l--llll (] ] !
05 0.0 05 1.0
Values

Series: residuals
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ARMA Model Diagnosis
Estimate Std.Error z-value Pr(>|z])

Residual ana Iysis 11 0 cestns o 0ssa 1o sas bttt
AR1 with phi=0.8 + outlier at t=100

Residuals from ARIMA(1,0,0) with zero mean Residuals from ARIMA(1,0,0) with zero mean
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ARMA Model Diagnosis
Residual analysis
* Check the degree of significance of each autocorrelation coefficient.
For a white noise process {gt]}:
r. &¢.~NO, 1/N) forall 7

([Anderson, 1942], [Barlett, 1946], [Quenouille, 1949]).

Therefore we can then stablish the 95% confidence interval:
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ARMA Model Diagnosis
Residual analysis

e Portmanteau test of the residuals:

Ljung & Box statistic (1978)

M 7‘2
0 =N(N+2)ZNT_T
=1
Under the null hypothesis that the residuals are independent,
Q is distributed according to a %2 with M-p-q degrees of
freedom.

If Q< ZZM_p_q(a) accept H,

If Q> y%y,, (@) reject H,  (tipical values of a :5% or 1%)
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ARMA Model Diagnosis

Residual analysis

E: Critical values for x? statistic

Table entry is the point X? with the

Probability p

probability p lying above it. The first ¥
column gives the degrees of freedom.
Probability p

df 0.1 0.05 0.025 0.01 0.005 0.001

1 2.70 3.84 5.02 6.63 7.87 10.83

2 4.60 5.99 7.37 9.21 10.59  13.82

3 6.25 7.81 9.34  11.34 12.83 16.27

4 797 9.48 11.14 13.27 14.86 18.47

5 9.23 11.07 12.83 15.08 16.75  20.52

6 10.64 12.59 14.44 16.81 18.54 22.46

7| 12.01 14.06  16.01  18.47  20.27  24.32

8| 1336 1550 17.53 20.09 2195 26.12

9| 1468 1691 19.02 21.66 23.58 27.88
10| 1598 1830 2048 2320 2518  29.59
11 17.27 1967 2192 2472 26.75 31.26
12 18.54 21.02  23.33 26.21 2830 3291
13 19.81 22.36 24.73  27.68 29.82 34.53
14| 21.06 23.68 26.11 29.14 31.31 36.12
15| 2230 2499 2748 3057 3280 37.70
16 23.54 26.29 28.84 32.00 34.26 39.25
17 24.76 27.58  30.19 3340 35.71 40.79
18 | 2598 2886 31.52 3480 37.15 4231
19 27.20 30.14 32.85 36.19 38.58 43.82
20 | 2841 3141 3417 3756 39.99 4531
21 | 29.61 32.67 3547 38.93 4140 46.80
22 | 30.81 33.92 36.78 40.28 42.79 4827
23 | 3200 3517 3807 4163 4418 49.73
24| 3319 3641 3936 4298 4555 5118
25| 34.38 37.65 4064 4431 4692 52.62
26 | 3536 38.88 4192 4564 4829 54.05
27 | 36.74 40.11 43.19  46.96 49.64 55.48
28 | 3791 41.33 4446 4827 5099 56.89
29 | 39.08 42,55 45.72 4958 5233  58.30
30 | 40.26 43.77 4698 50.89 53.6T 59.70
40 | 51.81 55.76 59.34 63.69 66.77 73.40
50 | 63.17 67.50 TL42 T76.15 T9.49  86.66
60 | 74.40 70.08 83.30 88.3% 9195 99.61
70 | 85.53 90.53 9502 10043 104.21 11232
80 | 96.58 101.88 106.63 112.33 116.32 124.84
90 | 107.56 113.15 118.14 124.12 128.30 137.21
100 | 118.50 124.34 129.56 135.81 140.17 149.45

Time Series Forecasting
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ARMA Model Diagnosis
Residual analysis

» Analysis of the residuals:
— Example: y[t] = 0.8 y[t-1] - 0.8 £t-1] + £t] with &[t] ~N(0,0.25)
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Lag Lag

Time Series Forecasting
Antonio Mufioz, fernando San Segundo, Jaime Pizarroso

48



ARMA Model Diagnosis
Residual analysis

« Model1: J[tl=¢@y[lt—1] = ¢ =0.8899
Box-Ljung test: X-squared = 70.13, df = 20, p-value = 1.734e-07

Time Series Forecasting
Antonio Mufioz, fernando San Segundo, Jaime Pizarroso
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ARMA Model Diagnosis
Residual analysis

 Model 2. J[t] = @yt — 1]
Box-Ljung test. X-squared = 12.262, df = 20, p-value = 0.9067

Residuals
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ARMA Model Diagnosis
Level of significance of the coefficients

* t* statistic: H,: ¢,=0

@1 — (¢1/Ho) _ P1

t*N___=
p—q-§6 N A
0¢1 0¢1

with &=1 if a constant term is included

z test of coefficients:

Estimate Std. Error z value Pr(>]|z])
arl 0.742446 0.041857 17.7375 <2e-16 ***
mal 0.019457 0.064988 0.2994 0.7646
intercept -0.027753 0.056188 -0.4939 0.6214

Signif. codes: 0 ‘***’/ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘'.” 0.1 * " 1
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ARMA Model Diagnosis
Example

ARMA(1,1): AR1=0.8, MA1=0.3, s,=0.25, N=500

> y <- arima.sim(n = 500, list(ar = c(0.8), ma
> ggtsdisplay(y,lag.max = 25)

c(0.3)), sd = sqgrt(0.25))

y
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0- ' !
2=
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L “ o
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/) |ttt ottt ot ettt ettt etetots ek e bndteb et b
E 03- 03-
— 0 5 10 15 20 25 0 5 10 15 20 25
E Lag Lag
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ARMA Model Diagnosis
Example

> #Fit model
> arima.fit <- Arima(y, order=c(1,0,1), include.constant = TRUE)
> summary (arima.fit)

Series: y
ARIMA(1,0,1) with non-zero mean

Coefficients:
arl mal mean
0.8078 0.2710 0.2557
s.e. 0.0295 0.0482 0.1397

sigma”2 estimated as 0.2286: 1log likelihood=-339.74
AIC=687.49 AICc=687.57 BIC=704.34

Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1

Training set 0.0005615644 0.4766461 0.381101 273.1589 406.4277 0.9421676 0.004156234
> coeftest (arima.fit)
z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
arl 0.807751 0.029457 27.4214 < 2.2e-16 ***
mal 0.271024 0.048205 5.6223 1.885e-08 ***
intercept 0.255653 0.139703 1.8300 0.06725

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 '’ 1
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ARMA Model Diagnosis
Example

> autoplot (arima.fit)

Inverse AR roots Inverse MA roots
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Example

> checkresiduals (arima.fit)

Ljung-Box test

Q* = 6.7621, df = 7, p-value = 0.4541

Model df: 3. Total lags used: 10
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ARMA Model Diagnosis

data: Residuals from ARIMA(1,0,1) with non-zero mean

Residuals from ARIMA(1,0,1) with non-zero mean
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ARMA Model Diagnosis
Example

> autoplot (y, series="Real")+ forecast::autolayer (arima.fit$fitted, series="Fitted")

2.
1-
0- M series
= — Fitted
— Real
- W
_2—
3-
0 100 200 300 400 500
Time
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