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Basic Linear Processes

1
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Basic Linear Processes
Definition
• A linear process can be represented as a linear combination of

random variables (Box-Jenkins):

𝑦 𝑡 = 𝜇 +෍

𝑖=0

∞

𝜓𝑖 𝜀[𝑡 − 𝑖]

where 𝜇 is the mean of 𝑦 𝑡 , 𝜓0 = 1 and {𝜀[𝑡]} is a sequence
of iid random variables with zero mean and well defined
distribution.

• We will focus on 3 types of linear processes:
- White noise processes

- Autoregressive processes

- Moving average processes
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Fundamental concepts
White noise process
• Definition: sequence of uncorrelated random variables,

identically distributed with zero mean and constant variance.

• General expression:

• Properties:

• Others: 
• Independent or strict white noise
• Gaussian white noise

𝑦[𝑡] = 𝜀[𝑡]

 

2 2
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Basic Linear Processes
White noise process

No significant 
autocorrelation 
coefficients
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Basic Linear Processes
Autoregressive processes

• Process AR(p) (Yule, 1927):

1 2[ ] [ 1] [ 2] ... [ ] [ ]py t y t y t y t p t    = + − + − + + − +

( ) [ ] [ ]B y t t =

where:

2

1 2( ) 1 ... p

pB B B B   = − − − −

• Using the backshift operator B:   By[t] = y[t-1]
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Basic Linear Processes
Autoregressive processes

• For an AR(p) to be stationary, the roots of its characteristic 
polynomial:

1 − 𝜑1𝐵 − 𝜑2𝐵
2−. . . −𝜑𝑝𝐵

𝑝 = 0

have to lie outside the unit circle.



Time Series Forecasting
Antonio Muñoz, fernando San Segundo, Jaime Pizarroso

9

Basic Linear Processes
Autoregressive processes
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Basic Linear Processes
Moving Average processes
• MA(q) process (Yule, 1921):

1 2[ ] [ ] [ 1] [ 2] ... [ ]qy t t t t t q       = + − − − − − − −

or: [ ] ( ) [ ]y t B t =

where:

2

1 2( ) 1 ... q

qB B B B   = − − − −
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• For a MA(q) process to be invertible, the roots of the
polynomial:

1 − 𝜃1𝐵 − 𝜃2𝐵
2−. . . −𝜃𝑞𝐵

𝑞 = 0

have to lie outside the unit circle.

If the MA(q) process is invertible, then it can be written as an
AR(∞).

Basic Linear Processes
Moving Average processes

• It is possible to write any stationary AR(p) model as an MA(∞):
𝑦 𝑡 = 𝜑𝑦 𝑡 − 1 + 𝜀 𝑡

= 𝜑 𝜑𝑦 𝑡 − 2 + 𝜀 𝑡 − 1 + 𝜀 𝑡

= 𝜑2𝑦 𝑡 − 2 + 𝜑𝜀 𝑡 − 1 + 𝜀 𝑡

= 𝜑3𝑦 𝑡 − 3 + 𝜑2𝜀 𝑡 − 2 + 𝜑𝜀 𝑡 − 1 + 𝜀 𝑡
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• ARMA(p,q) process (Wold, 1938):

1 1[ ] [ 1] ... [ ] [ ] [ 1] ... [ ]p qy t y t y t p t t t q       − − − − − = + − − − − −

or: ( ) [ ] ( ) [ ]B y t B t  =

Basic Linear Processes
ARMA processes

where:

2

1 2( ) 1 ... q

qB B B B   = − − − −

2

1 2( ) 1 ... p

pB B B B   = − − − −
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• For an ARMA(p,q) process to be stationary, the roots of the
polynomial:

1 − 𝜑1𝐵 − 𝜑2𝐵
2−. . . −𝜑𝑝𝐵

𝑝 = 0

have to lie outside the unit circle.

• For an ARMA(p,q) process to be invertible, the roots of the
polynomial:

1 − 𝜃1𝐵 − 𝜃2𝐵
2−. . . −𝜃𝑞𝐵

𝑞 = 0

have to lie outside the unit circle.

Basic Linear Processes
ARMA processes
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Basic Linear Processes
ARMA processes
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ARMA Model Identification

2
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• Under the assumption rk=0, 

if, in addition, {y[t]} is a MA(q) process, then: 
k

k 1
2 2

ˆ i

i 1

1
(1 2 ˆ )

N
r r

−

=

 + 

and we can stablish the 95% confidence interval:

k k

2 2

k ˆ ˆˆ 1.96 ; 1.96r rr    − +
 

( )
k k

2

ˆˆ N 0, rr 

ARMA Model Identification
Sample Autocorrelation Function (ACF)

 
r r

 

−

=

=

+ − −

= → = =

−





N k

t 1k k
k k N

20 0

t 1

( y [ t k ] y )( y [ t ] y )
ˆ

ˆ
ˆ

( y [ t ] y )

• Autocorrelation:
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Fundamental concepts
Stationary Processes
• Correlogram ={     } for k=1,... (not recommended for k>N/4)

k
r̂

ො𝜌𝑘=20

Y t



Time Series Forecasting
Antonio Muñoz, fernando San Segundo, Jaime Pizarroso

26

• For an AR(p) process, the ACF decays after k=p, but it never 
reachs 0  it is not easy to identify an AR process from its ACF

ARMA Model Identification
Partial Autocorrelation Function (PACF)
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• The PACF can be obtained by linear regression, interpreting each 
coefficient fkk as the partial correlation between y[t] and y[t-k] after 
having eliminated in both variables the effects of y[t-1],..,y[t-k+1]:

• For an AR(p) process and k>p:

...

]2t[yˆ]1t[yˆ]t[ŷ

]1t[yˆ]t[ŷ

2,21,2

1,1

−+−=

−=

ff

f

kk kk

1 1.96 1.96ˆ ˆ~ N 0 , ,
N N N

f f
  

  −   
   

ARMA Model Identification
Partial Autocorrelation Function (PACF)
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ARMA Model Identification
ACF/PACF Examples
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ACF

PACF

ARMA Model Identification
ACF/PACF Examples
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ARMA Model Identification
ACF/PACF Examples
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ARMA Model Identification
ACF/PACF Examples
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ARMA Model Identification
ACF/PACF Examples
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ARMA Model Identification
ACF/PACF Examples
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Basic Linear Processes
ARMA processes
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ARMA Model Identification
Identification of AR and MA processes
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ARMA Model Identification
Identification of ARMA(1,1) processes
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ARMA Model Diagnosis

3
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• Residuals = White Noise (Gausian)

• Stationary and invertible

• Coefficients are statistically significant and 
uncorrelated

• Model coefficients are sufficient to represent the 
series

• High degree of fit compared with other models

ARMA Model Diagnosis 
The ideal model
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ARMA Model Diagnosis
Residual analysis
• Plot of the standarized residuals with different confidence limits 

(±2, ±3 , ±4)

Check for heteroskedasticity (constant variance)
 Detection of outliers
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ARMA Model Diagnosis
Residual analysis: effect of an outlier
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ARMA Model Diagnosis
Residual analysis: effect of an outlier
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ARMA Model Diagnosis
Residual analysis
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ARMA Model Diagnosis
Residual analysis
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• Check the degree of significance of each autocorrelation coefficient. 
For a white noise process {[t]}:

rt & ftt~ N(0 , 1/N) for all t

([Anderson, 1942], [Barlett, 1946], [Quenouille, 1949]).

Therefore we can then stablish the 95% confidence interval:

𝑟𝜏 <
1.96

𝑁

𝜑𝜏𝜏 <
1.96

𝑁

ARMA Model Diagnosis
Residual analysis
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• Portmanteau test of the residuals: 

Ljung & Box statistic (1978)

Under the null hypothesis that the residuals are independent, 
Q is distributed according to a c2 with M-p-q degrees of 
freedom.

If Q< c2
M-p-q(a) accept H0

If Q> c2
M-p-q(a) reject H0        (tipical values of a :5% or 1%)

𝑄 = 𝑁(𝑁 + 2)෍

𝜏=1

𝑀
𝑟𝜏
2

𝑁 − 𝜏

ARMA Model Diagnosis
Residual analysis
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ARMA Model Diagnosis
Residual analysis
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• Analysis of the residuals:

– Example: y[t] = 0.8 y[t-1] - 0.8 [t-1] + [t] with  [t] ~N(0,0.25)

ARMA Model Diagnosis
Residual analysis
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• Model 1: ො𝑦 𝑡 = 𝜑𝑦 𝑡 − 1 ⇒ 𝜑 = 0.8899
Box-Ljung test: X-squared = 70.13, df = 20, p-value = 1.734e-07

ARMA Model Diagnosis
Residual analysis
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• Model 2:    ො𝑦 𝑡 = 𝜑𝑦 𝑡 − 1 − 𝜃𝑒 𝑡 − 1 ⇒ 𝜑 = 0.7854 𝜃 = 0.8414

Box-Ljung test. X-squared = 12.262, df = 20, p-value = 0.9067

ARMA Model Diagnosis
Residual analysis
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ARMA Model Diagnosis
Level of significance of the coefficients

• t* statistic: H0:f1=0

𝑡 ∗𝑁−𝑝−𝑞−𝛿=
ො𝜑1 − (𝜑1/𝐻0)

ො𝜎ෝ𝜑1
=

ො𝜑1
ො𝜎ෝ𝜑1

with =1 if a constant term is included

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)    

ar1        0.742446   0.041857 17.7375   <2e-16 ***

ma1        0.019457   0.064988  0.2994   0.7646    

intercept -0.027753   0.056188 -0.4939   0.6214    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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ARMA(1,1): AR1=0.8, MA1=0.3, se=0.25, N=500

ARMA Model Diagnosis
Example

> y <- arima.sim(n = 500, list(ar = c(0.8), ma = c(0.3)), sd = sqrt(0.25))

> ggtsdisplay(y,lag.max = 25)
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ARMA Model Diagnosis
Example
> #Fit model

> arima.fit <- Arima(y, order=c(1,0,1), include.constant = TRUE)

> summary(arima.fit)

Series: y 

ARIMA(1,0,1) with non-zero mean 

Coefficients:

ar1     ma1    mean

0.8078  0.2710  0.2557

s.e. 0.0295  0.0482  0.1397

sigma^2 estimated as 0.2286:  log likelihood=-339.74

AIC=687.49   AICc=687.57   BIC=704.34

Training set error measures:

ME      RMSE      MAE      MPE     MAPE      MASE        ACF1

Training set 0.0005615644 0.4766461 0.381101 273.1589 406.4277 0.9421676 0.004156234

> coeftest(arima.fit)

z test of coefficients:

Estimate Std. Error z value  Pr(>|z|)    

ar1       0.807751   0.029457 27.4214 < 2.2e-16 ***

ma1       0.271024   0.048205  5.6223 1.885e-08 ***

intercept 0.255653   0.139703  1.8300   0.06725 .  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Time Series Forecasting
Antonio Muñoz, fernando San Segundo, Jaime Pizarroso

54

ARMA Model Diagnosis
Example

> autoplot(arima.fit)
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ARMA Model Diagnosis
Example
> checkresiduals(arima.fit)

Ljung-Box test

data:  Residuals from ARIMA(1,0,1) with non-zero mean

Q* = 6.7621, df = 7, p-value = 0.4541

Model df: 3.   Total lags used: 10
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ARMA Model Diagnosis
Example
> autoplot(y, series="Real")+ forecast::autolayer(arima.fit$fitted, series="Fitted")
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Bibliography
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